Innovative Integration of Compressed Air Energy Storage (CAES) with

High-Temperature Concentrated Solar Power (CSP):
A Comprehensive Use-Case Study in Spain

1 W Javier Baigorri, Tereza Kubikova?, Theunis du Toit3, Coriolano Salvini4, David
Sanchez>, Miguel Herrador®, Fritz Zaversky!

1 MSc, Department of Solar Energy Technologies & Storage, CENER, C/ Ciudad de la Innovacién n°® 7, 31621 Sarriguren (Navarre), Spain, +34 948 25 28 00,
*Ibaigorri@cener.com; 2 DOOSAN SKODA POWER SRO, TYLOVA 157, 301 28, PLZEN, Czech Republic; 3 SoftinWay Switzerland GmbH, Baarerstrasse 2 — 6300 Zug,
Switzerland; 4 Department of Industrial, Electronic and Mechanical Engineering, University of Roma TRE, 00154 Roma, Italy; 5 Department of Energy Engineering,

Universidad de Sevilla, Sevilla 41092, Spain; 6 AALBORG, Hjulmagervej 55 - 9000 Aalborg, Denmark

The innovative concept of Horizon Europe ASTERIx-CAESar project
Partners Countries Years(oct 23-sept 27) M€ Budget TRL

ASTERIX-CAESar project focuses on the development of a novel high-efficiency solar thermal power plant concept with an integrated electricity storage solution.
The project combines air-based central receiver Concentrated Solar Power and Compressed Air Energy Storage to maximize conversion efficiency and power
grid energy management, enabling a new operation strategy and business model.
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ADltech ASTERIx-CAESar approach guarantees 24/7 Renewable Energy Sources coverage by offering storage capacity and thus provide
. - grid stability. Moreover, the concept improves performance regarding start-up, shut-down and load variations.
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energy Therm Tech Using air instead of molten salts or synthetic oils as heat transfer fluid brings down significantly the maintenance costs and
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lowers various risks, too. Operational costs will be reduced thanks to Al-based heliostat control requiring less personnel on site.
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o & Development of the next generation CSP/STE (Concentrated Solar Power/Solar Thermal Electricity) technology that provides
Qoo cheap energy storage (at very low LCOS of <10-15 c€/kWh) for stabilizing the power grid.

Medium-Scale
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— ow ,_\ < | A detailed design of the main components - compression train, expansion train, heat

It Is conducted an extensive analysis of the
thermodynamic performance of the ASTERIXs
concept, considering a 25 MWe plant in the south of
Spain with artificial above ground vessels and a

o " exchangers, thermal energy storage, bottoming cycle - has been carried out, and a
system-level model has been developed.
A comparison between constant pressure and sliding pressure operation modes for
the expansion train revealed an efficiency improvement of 6-6.8%. However, further
bottoming Rankine cycle. The model has been research.is requir.ed to assess vyhether this improvement justifies the higher costs and
: ) » complexity associated with sliding pressure mode.
implemented in Dymola. ) . |30 The optimal inlet pressure for the low-pressure turbine was identified at 6 bar.

d For the future work, an economic evaluation and multi-objective optimization of the

|—| concept will be conducted to further build on the previous findings.
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