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This study identifies key design trade-offs and performance drivers in Solar-
Heated D-CAES system:
➢ Increasing the number of compression stages improves CAES performance 

but increases system complexity and cost.
➢ Most compression heat cannot be reused during expansion → LT-TES sizing 

must align with the actual thermal exergy demand on the expansion train.
➢ ORC integration effectively recovers exergy losses, boosting both Power-to-

Power and Round-Trip efficiencies.
➢ LPT inlet pressure is a key optimisation variable, enabling a trade-off between 

P2P and RTE.

Table 1. Key advantages of CAES
➢ Decarbonizing the energy sector requires phasing 

out fossil fuels and massively deploying 
renewables.

➢ Wind and PV are abundant but non-dispatchable, 
compromising grid stability.

➢ Long-Duration Energy Storage (LDES) is 
instrumental to reduce curtailment and ensure 
reliable, low-carbon electricity.

➢ Compressed Air Energy Storage (CAES) offers a  
unique balance of technical performance and 
economic viability over other LDES (Table 1).

➢ This study explores a solar D-CAES concept using 
indirect air heating – unlike conventional fired-
CAES systems which burn natural gas.

Why CAES?

Other LDES Solar D-CAES

PHES
Not geographically 
restricted (storage 

vessels)

Batteries Lower LCOS, inertia

PTES Higher RTE

Hydrogen 
(P2H2P)

Higher RTE and 
lower LCOS

➢ The objective is to quantify how key design specifications 
impact system-wide performance.

➢ Flow Exergy:

➢ Exergy balance (system / component) [1]:

➢ Key Performance Indicators (KPI):
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1. Number of Compression Stages 
(Figure 2):
➢ Mechanical fuel exergy demand decreases 

as the process become more isothermal.
➢ Reducing the number of stages from 4 to 3 

significantly lowers thermal fuel exergy — 
but requires higher TES temperatures to 
efficiently recover compression heat.

➢ Larger compression trains also increase 
operating complexity and cost

2. Compression Heat Utilization:
➢ Only ~28% of compression heat can be 

reused in the expansion train (Figure 3), 
roughly equivalent to the heat generated 
in one compression stage.

➢ This is due to the unbalanced number of 
LT-HEX units between compression (4) 
and expansion (1) trains.

➢ Storing more heat leads to an 
unnecessary oversizing of the LT-TES 
(higher cost) and increased parasitic 
consumption in blowers (lower product 
exergy).

3. Organic Rankine Cycle [2]:
➢  Exergy losses can be partially 

recovered and converted into 
mechanical exergy (Figure 4).
• LPT & HT-HEX Exhausts: 

increase product exergy
• LT-HEX Exhaust: reduces 

mechanical fuel input.
➢ RTE and P2P improved by 12.1 

p.p. and 29.8 p.p.

Exergy-Based Framework
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Figure 1. Exergy Balance

Exergy-Informed Design Guidelines
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Figure 2. Number of compression stages

Stages 2 3 4
LT-TES 410°C 250°C 180°C

RTE 40.4% 43.0% 42.2%
P2P 75% 85% 90%
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4. Expansion Train Optimization:
➢ Adjusting LPT inlet pressure allows 

optimizing the balance between higher 
P2P and higher RTE (Figure 5).
• Max P2P: 122.7% (5 bar)
• Max RTE: 58.2% (17 bar)

Figure 5. Low-Pressure Turbine Inlet Pressure [bar]

RTE: 43.7%
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Figure 4. Impact of ORC integration 

Artificial Vessels

(CAS)

150 bar

HPT LPT GENERATORTHROTTLE

High-Temperature

Thermal Energy 

Storage (800ºC)

HT-HEX

G

Four compression stages (casings)

LT-HEX

5 bar

750ºC
T0 = 25ºC

P0 = 1 atm

30 kg/s

∆T=10ºC

Low-Temperature

Thermal Energy 

Storage (180ºC)

42 bar

550ºC

ηpol,compr = 85%

ηpol, HPT = 87% ηpol, LPT = 84%

ηgen= 98%

ηmotor= 96.5%

3.5 bar 12.3 bar 43 bar 150 bar

128.9 kg/s 36.1 kg/s

41.5 kg/s
150 bar

LPT Exhaust

454ºC

HT-HEX Exhaust

300ºC

LT-HEX Exhaust

180ºC

Conclusions

18.65

0.53

0.2

0.65

19.81

2.28

2.31

23.23

1.23

1.05

0.11

0.04

0.006

1.19

3.51

2.39

1.18

1.8

5.29

0.37

0.5

0.2

H
T

-T
E

S

C
A

S

C
o

m
p

re
ss

o
rs

E
xp

an
si

o
n

 T
ra

in

H
T

-H
E

X

LT-HEX

LT-HEX

ORC

ORC

ORC

12.79

1.16

12.79

16.65

4.72

5.13

0.79

1.11 LT-TES

Sankey Diagram
ሶ𝑬𝑷𝒓𝒐𝒅𝒖𝒄𝒕
𝒎𝒆𝒄𝒉 : 23.67 MW
ሶ𝑬𝑭𝒖𝒆𝒍
𝒎𝒆𝒄𝒉: 19.3 MW
ሶ𝑬𝑭𝒖𝒆𝒍
𝒕𝒉 : 23.23 MW
ሶ𝑬𝑳𝒐𝒔𝒔𝒆𝒔
𝒕𝒉 : 3.62 MW
ሶ𝑬𝑫: 15.24 MW

RTE: 55.7%
P2P: 122.7%

Figure 6. Sankey Diagram. Values in MW.
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Figure 3. Fraction of compression thermal exergy 
stored in LT-TES
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ሶ𝐸𝑓𝑙𝑜𝑤 = ሶ𝑚 𝐻 − 𝐻0 − 𝑇0 · (𝑆 − 𝑆0)
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