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renewables.

compromising grid stability.

reliable, low-carbon electricity.

CAES systems which burn natural gas.
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- Why CAES?

» Decarbonizing the energy sector requires phasing
out fossil fuels and massively deploying

» Wind and PV are abundant but non-dispatchable,

unique balance of technical performance and
economic viability over other LDES (Table 1).
» This study explores a solar D-CAES concept using | Hydrogen

» Long-Duration Energy Storage (LDES) is PHES
instrumental to reduce curtailment and ensure

Table 1. Key advantages of CAES

Other LDES Solar D-CAES
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 Exergy-Based Framework

» The objective is to quantity how key design specifications
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impact system-wide performance.
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» Key Performance Indicators (KPI):

indirect air heating — unlike conventional fired- (P2H2P)
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1. Number of Compression Stages

(Figure 2):

» Mechanical fuel exergy demand decreases
as the process become more isothermal.

» Reducing the number of stages from 4 to 3
significantly lowers thermal fuel exergy —
but requires higher TES temperatures to
efficiently recover compression heat.

» Larger compression trains also increase
operating complexity and cost

rIpol,compr= 85% C1 Cz
Nmotor™— 96.5%

12.3 bar

2. Compression Heat Utilization:
» Only ~28% of compression heat can be
reused in the expansion train (Figure 3),
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3. Organic Rankine Cycle [2]:
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roughly equivalent to the heat generated 4. Expansion Train Optimization: 59% 124%
In one compression stage. 30 C1 C2 C3 C4 . . 58% 122%,

» This is due to the unbalanced number ot z X > > > g g ?Cﬂﬁf;f %Egb;rll;itcepggfvsvuereen ililo}?e]i __57% 120%
LT-HEX units between compression (4) = 25 w PIZDP q hg her RTE (Fi 5) 5 = 56% 2
and expansion (1) trains > and highet 15Ure 5J. o, 118% o

. ' oD * Max P2P: 122.7% (5 bar) 2 o0 o) A

» Storing more heat leads to an 5 20 5 549, 116%

% * Max RTE: 58.2% (17 bar)

unnecessary oversizing of the LT-TES - 53% 114%

(higher cost) and increased parasitic 15 529, 112%

consumption in blowers (lower product 0% 20% 40% 60% 80% 100% 3 8 13 18

exergy). Figure 3. Fraction of compression thermal exerqy Figure 5. Low-Pressure Turbine Inlet Pressure [bar]

stored in LT-TES
°
°
- Sankey Diagram N Conclusions ™

E’,}‘;g{‘- 19.3 MW
Eth :23.23 MW

<
22
Ep:15.24 MW 23.23 E _—
TE:5 = 1 :
RTE: 55.7% C S s
P2P: 122.7% 16.65
0.53 mm— =
c . 5.29
5 B 351 :
2 1279 &
18.65 = 12.79 l
g 0.79
=)
O 35] - 0.21 y 00 — LT-HEX — 0.37
0.65 em— 9-8 : ?
116 LT-HEX 95 s 1.
\ Figure 6. Sankey Diagram. Values in MW.

This study identifies key design trade-offs and performance drivers in Solar-

Heated D-CAES system:

» Increasing the number of compression stages improves CAES performance
but increases system complexity and cost.

» Most compression heat cannot be reused during expansion = LT-TES sizing
must align with the actual thermal exergy demand on the expansion train.

» ORC integration effectively recovers exergy losses, boosting both Power-to-
Power and Round-Trip efficiencies.

» LPT inlet pressure is a key optimisation variable, enabling a trade-otf between
P2P and RTE.
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