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1. Introduction

Solar Tower (ST) plants play a crucial role in renewable energy systems, achieving high
thermal efficiency and enabling large-scale energy storage. A critical challenge in ST plants is
modelling and optimizing the heliostat aiming strategy to maximize energy capture while
ensuring operational safety and receiver longevity [1,2,3]. In our previous work [4], we
introduced a model-free deep Reinforcement Learning (RL) approach using the Soft
Actor-Critic (SAC) algorithm. It achieved an 8.8% increase in yearly absorbed power
compared to traditional fixed-point aiming strategies. However, this study identified key areas
for improvement, including the optimization of training efficiency and the incorporation of
realistic solar variability:

1. Training Efficiency and Scalability: The original SAC implementation required extensive
computational resources and time. We integrate Ray RLIib, a distributed RL
framework, to enhance training scalability and enable advanced hyperparameter
tuning.

2. Real-World Solar Variability: Instead of a constant DNI assumption, we now train the
model using real-world DNI data from the Plataforma Solar de Almeria (PSA) year-type
dataset, capturing transient effects such as cloud coverage and seasonal variations.

These advancements aim to produce a more robust and adaptable aiming strategy better
suited for real-world deployment in existing and future ST plants.

2. Methodology

As commented before, Ray RLIib [5] has been used in this work. It provides a scalable and
flexible framework for distributed RL training, significantly improving upon the original
TensorFlow-based SAC implementation. The key enhancements include:

« Parallel Environment Sampling: Multiple environment instances run concurrently,
accelerating data collection and policy updates.

» Hyperparameter Optimization: Automated tuning of learning rates, network
architectures, and exploration parameters to maximize policy performance.
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Besides, using the PSA year-type dataset provides minute-resolution DNI measurements,
enabling the RL agent to learn under realistic solar conditions that challenge traditional
control strategies.

3. Preliminary Results and Discussion

Adopting Ray RLIib has transformed the training paradigm, improving both efficiency and
performance. While the original SAC implementation required 9 days to train a single agent
configuration, the new distributed framework completes simultaneous training and
hyperparameter optimization of 500 distinct SAC configurations in less than 4 days
-representing a speedup in experimental throughput. This massive parallelization capability,
which evaluated over 500 parameter combinations including network architectures, learning
rates, and exploration strategies, not only accelerates development cycles but also enhances
policy robustness through comprehensive configuration space exploration. Moreover, the
top-performing agents achieve a consistent 9.1% increase in annual energy yield over
conventional methods, surpassing our previous 8.8% benchmark. These results, achieved
under realistic variable DNI conditions with cloud transients, demonstrate both the technical
superiority of our approach and its readiness for industrial-scale deployment in solar tower
plants.

4. Conclusions and Future Work

This study demonstrates how integrating Ray RLIib with real-world DNI data significantly
advances RL-based heliostat aiming optimization, achieving both superior scalability and
operational robustness. The distributed framework enables faster and more efficient training,
reducing computation time and making the approach practical for industrial-scale deployment.
By incorporating actual PSA irradiance data with its inherent variability, the developed
strategies show remarkable resilience to environmental fluctuations, maintaining stable
performance even during cloud transients. Looking ahead, we plan to validate these results
through field testing at the CESA-1 plant while exploring transfer learning techniques to adapt
pre-trained policies to new solar installations with minimal retraining, potentially improving
how solar tower plants optimize their aiming strategies across different geographic locations
and receiver configurations.
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